AMPA/kainate receptors drive rapid output and precise synchrony in olfactory bulb granule cells.

نویسنده

  • Nathan E Schoppa
چکیده

Gamma frequency (30-70 Hz) synchronized oscillatory activity in the olfactory bulb is widely believed to be important for odor detection and discrimination. As in other circuits with "gamma activity," the activity in the bulb is driven by GABAergic interneurons, specifically a class of axonless cells called granule cells. However, bulb granule cells appear to lack some key mechanistic features that promote rapid synchrony in other circuits, including direct electrical interconnections and dominant actions for fast neurotransmitter receptors. At least under "static" stimulus conditions, granule cells are driven by kinetically slow NMDA receptors. Here, I used patch-clamp recordings in rat olfactory bulb slices to better understand mechanisms that shape granule cell activity under "dynamic" stimulus conditions that mimic a natural odor stimulus. During a 4 Hz patterned stimulation of olfactory nerve afferents, activation of single granule cells was primarily controlled by two classes of AMPA/kainate receptor-mediated synaptic inputs derived from output mitral cells. The rapid kinetics of these receptors, together with inactivation of A-type potassium channels, ensured that granule cells had short spike-response times. Studies in cell pairs, moreover, indicated that excitatory inputs could synchronize granule cells on a rapid time scale (2-5 ms), in turn resulting in phase-locked GABA release onto mitral cells. The precision of granule cell synchrony was controlled by the same biophysical mechanisms that promoted rapid single-cell spiking. These studies demonstrate the mechanistic underpinnings that transform a circuit with slow, uncoupled activity under static conditions into a fast, dynamic circuit operating with high precision under physiological conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological Analysis of Ionotropic Glutamate Receptor Function in Neuronal Circuits of the Zebrafish Olfactory Bulb

Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and i...

متن کامل

Multiple modes of synaptic excitation of olfactory bulb granule cells.

Inhibition generated by granule cells, the most common GABAergic cell type in the olfactory bulb, plays a critical role in shaping the output of the olfactory bulb. However, relatively little is known about the synaptic mechanisms responsible for activating these interneurons in addition to the specialized dendrodendritic synapses located on distal dendrites. Using two-photon guided minimal sti...

متن کامل

Current-source density analysis in the rat olfactory bulb: laminar distribution of kainate/AMPA- and NMDA-receptor-mediated currents.

The one-dimensional current-source density method was used to analyze laminar field potential profiles evoked in rat olfactory bulb slices by stimulation in the olfactory nerve (ON) layer or mitral cell layer (MCL) and to identify the field potential generators and the characteristics of synaptic activity in this network. Single pulses to the ON evoked a prolonged (>/=400 ms) sink (S1ON) in the...

متن کامل

Organization of ionotropic glutamate receptors at dendrodendritic synapses in the rat olfactory bulb.

Dendrodendritic synapses between mitral (or tufted) and granule cells of the olfactory bulb play a major role in the processes of odor discrimination and olfactory learning. Release of glutamate at these synapses activates postsynaptic receptors on the dendritic spines of granule cells, as well as presynaptic NMDA receptors in the mitral cell membrane. However, immunocytochemical studies have f...

متن کامل

Synaptic Inhibition in the Olfactory Bulb Accelerates Odor Discrimination in Mice

Local inhibitory circuits are thought to shape neuronal information processing in the central nervous system, but it remains unclear how specific properties of inhibitory neuronal interactions translate into behavioral performance. In the olfactory bulb, inhibition of mitral/tufted cells via granule cells may contribute to odor discrimination behavior by refining neuronal representations of odo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 50  شماره 

صفحات  -

تاریخ انتشار 2006